LESSON 3.1d

Solving Quadratics by Factoring and Finding the Zeros

Where are we? What are we doing? Where are we going?

Learning how to "*solve*" quadratic functions/equations

... find the "*roots*" of the function/equation ... which are the same as the *x*-intercepts.

- 1. Solve by *graphing* the equation on your graphing calculator (yesterday)
- 2. Solve *Algebraically*
 - using square roots (L3.1 yesterday)
 - by factoring / "finding the zeros" of the function (L3.1 today)
 - completing the square (L3.3)
 - using the quadratic function (L3.4)

Today you will:

- Solve quadratic functions by factoring
- Solve quadratic functions by finding the zeros of the function
- Practice using English to describe math processes and equations

Core Vocabulary:

• zero of a function, p. 96

• A zero of a function f is an x-value for which f(x) = 0 ...an x-intercept ...a root

- Zero Product Property, p. 96
 - If $a \cdot b = 0$ then what can you say about a and b? One or both are zero.
 - If the product of two expressions is zero, then one or both of the expressions equal zero.
 - If a and b are expressions and ab = 0, then a = 0 or b = 0

Solve $x^2 - 4x = 45$ by factoring.

SOLUTION

$x^2 - 4x = 45$	Write the equation.

x + 5 = 0

x = -5

Write in standard form.

Factor the polynomial.

Zero-Product Property

Solve for x.

 $x^2 - 4x - 45 = 0$

x - 9 = 0

x = 9

(x - 9)(x + 5) = 0

UNDERSTANDING MATHEMATICAL TERMS

If a real number k is a zero of the function $f(x) = ax^2 + bx + c$, then k is an x-intercept of the graph of the function, and k is also a root of the equation $ax^2 + bx + c = 0$. The solutions are x = -5 and x = 9.

You know the *x*-intercepts of the graph of f(x) = a(x - p)(x - q) are *p* and *q*. Because the value of the function is zero when x = p and when x = q, the numbers *p* and *q* are also called *zeros* of the function. A **zero of a function** *f* is an *x*-value for which f(x) = 0.

or

or

You try it:

Solve $x^2 + 2x = 48$ using factoring and the Zero Product Property

$$x^{2} + 2x - 48 = 0$$

(x + 8)(x - 6) = 0
So either (x + 8) = 0 or (x - 6) = 0
 $x = -8$ $x = 6$
The solutions are $x = -8, 6$

Find the zeros of $f(x) = 2x^2 - 11x + 12$.

SOLUTION

To find the zeros of the function, find the *x*-values for which f(x) = 0.

 $2x^2 - 11x + 12 = 0$ Set f(x) equal to 0.

(2x-3)(x-4) = 0 Factor the polynomial.

2x - 3 = 0 or x - 4 = 0 Zero-Product Property

x = 1.5 or x = 4 Solve for x.

The zeros of the function are x = 1.5 and x = 4. You can check this by graphing the function. The *x*-intercepts are 1.5 and 4.

For a science competition, students must design a container that prevents an egg from breaking when dropped from a height of 50 feet.

- **a.** Write a function that gives the height *h* (in feet) of the container after *t* seconds. How long does the container take to hit the ground?
- **b.** Find and interpret h(1) h(1.5).

SOLUTION

a. The initial height is 50, so the model is $h = -16t^2 + 50$. Find the zeros of the function.

$h = -16t^2 + 50$	Write the function.
$0 = -16t^2 + 50$	Substitute 0 for <i>h</i> .
$-50 = -16t^2$	Subtract 50 from each side.
$\frac{-50}{-16} = t^2$	Divide each side by -16 .
$\pm\sqrt{\frac{50}{16}} = t$	Take square root of each side.
$+$ 1 8 \approx <i>t</i>	Use a calculator

Reject the negative solution, -1.8, because time must be positive. The container will fall for about 1.8 seconds before it hits the ground.

INTERPRETING EXPRESSIONS

In the model for the height of a dropped object, the term $-16t^2$ indicates that an object has fallen $16t^2$ feet after *t* seconds.

b. Find h(1) and h(1.5). These represent the heights after 1 and 1.5 seconds.

$$h(1) = -16(1)^{2} + 50 = -16 + 50 = 34$$
$$h(1.5) = -16(1.5)^{2} + 50 = -16(2.25) + 50 = -36 + 50 = 14$$
$$h(1) - h(1.5) = 34 - 14 = 20$$
Check

So, the container fell 20 feet between 1 and 1.5 seconds. You can check this by graphing the function. The points appear to be about 20 feet apart. So, the answer is reasonable.

A monthly teen magazine has 48,000 subscribers when it charges \$20 per annual subscription. For each \$1 increase in price, the magazine loses about 2000 subscribers. How much should the magazine charge to maximize annual revenue? What is the maximum annual revenue?

SOLUTION

- **Step 1** Define the variables. Let x represent the price increase and R(x) represent the annual revenue.
- Step 2 Write a verbal model. Then write and simplify a quadratic function.

Step 3 Identify the zeros and find their average. Then find how much each subscription should cost to maximize annual revenue.

The zeros of the revenue function are 24 and -20. The average of the zeros is $\frac{24 + (-20)}{2} = 2$.

To maximize revenue, each subscription should cost 20 + 2 = 22.

Step 4 Find the maximum annual revenue.

R(2) = -2000(2 - 24)(2 + 20) = \$968,000

So, the magazine should charge \$22 per subscription to maximize annual revenue. The maximum annual revenue is \$968,000.

Pg 100, #27-53 odd, 57, 68